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Why do we succeed in learning using neural networks? Feed-forward Networks |Low r': intractable | Some norm? | More hidden units=> lower norm=better generalization? The 28th Conference on Learning Theory (COLT), 2015 (to appear).

What property (inductive bias) makes them possible to learn? Minimum norm: Infinite-sized networks?

representation).®

Higher rank = lower trace-norm=better generalization




