Sparse Matrix Factorization

Behnam Neyshabur ${ }^{1}$ Rina Panigrahy ${ }^{2}$
${ }^{1}$ Toyota Technological Institute at Chicago
${ }^{2}$ Microsoft Research

November 19, 2013

Unsupervised Learning

Unsupervised learning is about describing the data in the best informative way

- Why unsupervised learning?
- Enormous amount of unlabeled data
- Facebook: 300 million new photos are added per day
- Youtube: 150,000 hours of video are uploaded per day
- Multi-task learning
- How to capture properties of data?

High Level Representation ${ }^{1}$

${ }^{1}$ Image from: http://theanalyticsstore.com/deep-learning

Deep Networks

$$
Y=\sigma\left(X_{1} \sigma\left(X_{2} \sigma\left(\ldots X_{s}\right)\right)\right)
$$

High $\quad X_{4}$
Features

Pixels

Y

RBMs, Auto-Encoders

RBM

$$
\begin{aligned}
& v=\sigma\left(W^{1} h^{1}\right) \\
& h^{1}=\sigma\left(W^{1 \top} v\right)
\end{aligned}
$$

Auto-Encoder

$$
\begin{aligned}
& v=\sigma(W h) \\
& h=\sigma\left(\tilde{W}^{\top} v\right)
\end{aligned}
$$

Sparsity Assumption

Main Observations:

- Each high level feature is composed of a few low level features
- Each image contains a few high level features.
- We are looking for a compact representation of the data:

$$
Y=\sigma\left(X_{1} \sigma\left(X_{2} \sigma\left(\ldots X_{s}\right)\right)\right)
$$

Sparse Matrix Factorization

Problem

Given a matrix Y, minimize the total sparsity $\sum_{i=1}^{s} \pi\left(X_{i}\right)$ s.t $Y=\sigma\left(X_{1} \cdot \sigma\left(X_{2} \cdot \sigma\left(\ldots X_{s}\right)\right)\right)^{a}$
${ }^{a} \sigma$ is a term-wise sign function

Problem

Given a matrix Y, minimize the total sparsity $\sum_{i=1}^{s} \pi\left(X_{i}\right)$ s.t. $Y=X_{1} X_{2} \ldots X_{s}$

Smallest Circuit

Sparse Matrix Factorization (non-linear) of Y

$$
\equiv
$$

Smallest circuit that generates Y.

$$
\begin{gathered}
a \mid b: \sigma(a+b-0.5) \\
a \& b: \sigma(a+b-1.5) \\
!a: \sigma(-a)
\end{gathered}
$$

Problem Settings

- Each X_{i} is a d-sparse random matrix
- Each non-zero entry in X_{i} is either +1 or -1 with equal probability

Problem
Let $Y=X_{1} X_{2} \ldots X_{s}$.
Given Y, find X_{1}, \ldots, X_{s}.
Problem
Let $Y=\sigma\left(X_{1} . \sigma\left(X_{2} . \sigma\left(\ldots X_{s}\right)\right)\right)^{a}$.
Given Y, find X_{1}, \ldots, X_{s}
${ }^{a} \sigma$ is a term-wise sign function

A Simple Case: $Y=X_{1} X_{2}$

Sparse Decomposition:

$$
Y=\left[\begin{array}{cccccccc}
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1
\end{array}\right]\left[\begin{array}{cccccccc}
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1 \\
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0
\end{array}\right]
$$

A Simple Case: $Y=X_{1} X_{2}$

Sparse Decomposition:

$$
Y=\left[\begin{array}{cccccccc}
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1
\end{array}\right]\left[\begin{array}{cccccccc}
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1 \\
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0
\end{array}\right]
$$

Low Rank Decomposition:

A Simple Case: $Y=X_{1} X_{2}$

Sparse Decomposition:

$$
Y=\left[\begin{array}{cccccccc}
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1
\end{array}\right]\left[\begin{array}{cccccccc}
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1 \\
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0
\end{array}\right]
$$

Low Rank Decomposition:

$$
Y=\left[\begin{array}{lll}
+1 & +1 & -1 \\
-1 & +1 & -1 \\
+1 & -1 & +1 \\
+1 & +1 & -1 \\
+1 & +1 & +1 \\
-1 & +1 & -1 \\
-1 & +1 & -1 \\
+1 & +1 & +1
\end{array}\right]\left[\begin{array}{lll}
-1 & +1 & -1 \\
+1 & -1 & +1 \\
+1 & +1 & +1 \\
+1 & +1 & -1 \\
+1 & +1 & -1 \\
+1 & +1 & +1 \\
-1+1 & -1 \\
-1 & +1 & -1
\end{array}\right]^{\top}
$$

A Simple Case: $Y=X_{1} X_{2}$

Sparse Decomposition:

$$
Y=\left[\begin{array}{cccccccc}
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1
\end{array}\right]\left[\begin{array}{cccccccc}
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1 \\
+1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0
\end{array}\right]
$$

Low Rank Decomposition:

$$
Y=\left[\begin{array}{lll}
+1 & +1 & -1 \\
-1 & +1 & -1 \\
+1 & -1 & +1 \\
+1 & +1 & -1 \\
+1 & +1 & +1 \\
-1 & +1 & -1 \\
-1 & +1 & -1 \\
+1 & +1 & +1
\end{array}\right]\left[\begin{array}{lll}
-1 & +1 & -1 \\
+1 & -1 & +1 \\
+1 & +1 & +1 \\
+1 & +1 & -1 \\
+1 & +1 & -1 \\
+1 & +1 & +1 \\
-1 & +1 & -1 \\
-1 & +1 & -1
\end{array}\right]^{\top}
$$

A Special Case: $Y=A X$

Dictionary Learning: $A=\left[\begin{array}{lllllll}A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_{6} & A_{7}\end{array} A_{8}\right]$

$$
Y=A\left[\begin{array}{cccccccc}
0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\
0 & 0 & +1 & 0 & 0 & +1 & 0 & +1 \\
+1 & 0 & +1 & 0 & -1 & 0 & 0 & +1 \\
+1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & +1 & 0 & 0 & 0 \\
-1 & 0 & 0 & +1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & 0 & -1 & 0
\end{array}\right]
$$

PCA: $A=\left[\begin{array}{lll}A_{1} & A_{2} & A_{3}\end{array}\right]$

$$
Y=A\left[\begin{array}{l}
-1
\end{array}+\begin{array}{ll}
+1 & -1 \\
+1 & -1
\end{array}\right]
$$

What do we already know?

What do we already know?

A very recent work by Arora et al:

- Polynomial time algorithm for non-linear factorizations of random d-sparse networks: $Y=\sigma\left(X_{1} \cdot \sigma\left(X_{2} \cdot \sigma\left(\ldots X_{s}\right)\right)\right)$
- Sparsity $d \leq n^{1 / 5}$
- Depth $s \leq \log _{d} n$.
- When depth $s \leq \log _{d} n$, linear and nonlinear cases are almost the same.

What do we already know?

A very recent work by Arora et al:

- Polynomial time algorithm for non-linear factorizations of random d-sparse networks: $Y=\sigma\left(X_{1} \cdot \sigma\left(X_{2} \cdot \sigma\left(\ldots X_{s}\right)\right)\right)$
- Sparsity $d \leq n^{1 / 5}$
- Depth $s \leq \log _{d} n$.
- When depth $s \leq \log _{d} n$, linear and nonlinear cases are almost the same.

Our Goal

Develope a natural algorithm based on the following fundamental rule:
Neurons that fire together, wire together!

Main Result

Theorem
If

- $Y=X_{1} X_{2} \ldots X_{s}$
- sparsity $d \leq n^{1 / 6}$
- $s \leq \frac{\sqrt{n}}{d}$
w.h.p. if X_{i} is invertible, there is a natural algorithm that computes X_{1}, \ldots, X_{s} in a polynomial time.

Intuition

Proof Sketch

$$
Y=X_{1} X_{2} \ldots X_{s}
$$

Proof Sketch

$$
Y=\underbrace{X_{1}}_{X} \underbrace{X_{2} \ldots X_{s}}_{Z}
$$

- $Y Y^{\top} \sim X X^{\top}$
- $X X^{\top}=\operatorname{round}\left(Y Y^{\top}\right)$
- Getting X from $X X^{\top}$.
- Recovering Z.

Distribution of Y

We want to show that :

$$
x_{i} \cdot x_{j} \sim\left(x_{i} Z\right) \cdot\left(x_{j} Z\right)
$$

Lemma
If

- $q=x_{i} Z$
- $x_{i} \sim \mathcal{N}(0,1)^{n}$
w.h.p. $\Phi_{q}(t) \leq e^{\frac{t^{2}}{2} \pm t^{2} \tilde{O}\left(\frac{\ell}{\sqrt{n}}\right)}$.

Characteristic function is defined as:
$\Phi_{X}(t)=E\left[e^{t X}\right]$ and for a gaussian variable X we have that

$\Phi_{X}(t)=e^{t^{2} / 2}$

Distribution of $Y Y^{\top}$

Lemma

If

- $q=x_{i} Z$ and $w=x_{j} Z$.
- $x_{i}, x_{j} \sim \mathcal{N}(0,1)^{n}$
w.h.p.
$\Phi_{q, w}(s, t) \leq e^{\frac{t^{2}+s^{2}}{2} \pm(s+t)^{2} \tilde{O}\left(\frac{e}{\sqrt{n}}\right)}$
$x_{i} x_{j}^{\top}=y_{i} y_{j}^{\top} \pm \frac{1}{2}$

Recovering X from $X X^{\top}$

Recovering Z

- By calculating the inverse of X directly: $Z=X^{-1} Y$

Recovering Z

- By calculating the inverse of X directly: $Z=X^{-1} Y$
- By iterative corrections:

$$
\operatorname{err}_{n}=Y\left(I-\frac{1}{\alpha} X X^{\top}\right)^{n}
$$

Conclusion and Future Works

- There exists a simple natural algorithm that is guaranteed to recover random sparse networks of depth $O(\sqrt{n} / d)$.
- Future works:
- Extending the algorithm and proves to non-linear case with $O(\sqrt{n} / d)$ layers.
- Showing that we can recover denser matrices by more careful analysis
- Develop a practical learning method based on the proposed algorithm and evaluate it on the real data

Thank You!

Dictionary Learning under Group Sparsity Assumption

Detection

Do we always need to detect different parts of human body before detecting a human?

Detection

Do we always need to detect different parts of human body before detecting a human?

Detection

Do we always need to detect different parts of human body before detecting a human?

Group Sparsity

- Each group is a high level feature that includes several low level features (parts).
- Each part can be seen in several groups.
- Given matrix Y such that $Y=A X$, find A and X under group sparsity assumption for X.

The general idea

- Detect all groups.
- Find a correlation clustering of groups.
- Show that each cluster corresponds to a part.
- Set A_{i} to be the average over all Y_{j} where Y_{j} has the part i.

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}+\frac{\left(-Q_{2}\right)^{k}}{2 n}$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}+\frac{\left(-Q_{2}\right)^{k}}{2 n}+\ldots$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}+\frac{\left(-Q_{2}\right)^{k}}{2 n}+\ldots$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}+\frac{\left(-Q_{2}\right)^{k}}{2 n}+\ldots$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}+\frac{\left(-Q_{2}\right)^{k}}{2 n}+\ldots$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}+\frac{\left(-Q_{2}\right)^{k}}{2 n}+\cdots+\frac{Q_{n}^{k}}{2 n}$

Distribution of $Y Y^{\top}$

$$
E\left[X^{k}\right]=\frac{Q_{1}^{k}}{2 n}+\frac{\left(-Q_{1}\right)^{k}}{2 n}+\frac{Q_{2}^{k}}{2 n}+\frac{\left(-Q_{2}\right)^{k}}{2 n}+\cdots+\frac{Q_{n}^{k}}{2 n}+\frac{\left(-Q_{n}\right)^{k}}{2 n}
$$

Distribution of $Y Y^{\top}$

$E\left[X^{k}\right]=E\left[Q^{k}\right]+\frac{\sum_{i} Q_{i}^{k}-E\left[Q^{k}\right]}{n} \leq E\left[Q^{k}\right]+\frac{\log ^{k} n}{\sqrt{n}}$

Recovering $X X^{\top}$ from $Y Y^{\top}$

$$
\begin{aligned}
& Y_{i} Y_{j} \top=X_{i} Z_{1} \ldots Z_{1} \top X_{j} \\
& {\left[\begin{array}{llll}
1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \ldots\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & f_{1} \\
a_{2} & b_{2} & c_{2} & f_{2} \\
a_{3} & b_{3} & c_{3} & f_{3} \\
a_{4} & b_{4} & c_{4} & f_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

Recovering $X X^{\top}$ from $Y Y^{\top}$

$$
\left.\begin{array}{c}
Y_{i} Y_{j} \top=X_{i} Z_{1} \ldots Z_{1} \top X_{j} \\
{\left[\begin{array}{lll}
1 & -1 & 0
\end{array} 1\right.}
\end{array}\right]\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \ldots\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & f_{1} \\
a_{2} & b_{2} & c_{2} & f_{2} \\
a_{3} & b_{3} & c_{3} & f_{3} \\
a_{4} & b_{4} & c_{4} & f_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right], ~ Y_{i} Y_{j} \top=-1 \pm \epsilon_{1} \quad .
$$

Recovering $X X^{\top}$ from $Y Y^{\top}$

$$
\left.\begin{array}{c}
Y_{i} Y_{j} \top=X_{i} Z_{1} \ldots Z_{1} \top X_{j} \\
{\left[\begin{array}{lll}
1 & -1 & 0
\end{array} 1\right.}
\end{array}\right]\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \ldots\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & f_{1} \\
a_{2} & b_{2} & c_{2} & f_{2} \\
a_{3} & b_{3} & c_{3} & f_{3} \\
a_{4} & b_{4} & c_{4} & f_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right] .
$$

Recovering $X X^{\top}$ from $Y Y^{\top}$

$$
\left.\begin{array}{c}
Y_{i} Y_{j} \top=X_{i} Z_{1} \ldots Z_{1} \top X_{j} \\
{\left[\begin{array}{lll}
1 & -1 & 0
\end{array} 1\right.}
\end{array}\right]\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \ldots\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & f_{1} \\
a_{2} & b_{2} & c_{2} & f_{2} \\
a_{3} & b_{3} & c_{3} & f_{3} \\
a_{4} & b_{4} & c_{4} & f_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right],
$$

Recovering $X X^{\top}$ from $Y Y^{\top}$

$$
\left.\begin{array}{c}
Y_{i} Y_{j} \top=X_{i} Z_{1} \ldots Z_{1} \top X_{j} \\
{\left[\begin{array}{lll}
1 & -1 & 0
\end{array} 1\right.}
\end{array}\right]\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \ldots\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & f_{1} \\
a_{2} & b_{2} & c_{2} & f_{2} \\
a_{3} & b_{3} & c_{3} & f_{3} \\
a_{4} & b_{4} & c_{4} & f_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right] .
$$

Recovering $X X^{\top}$ from $Y Y^{\top}$

$$
\begin{aligned}
& Y_{i} Y_{j} \top=X_{i} Z_{1} \ldots Z_{1} \top X_{j} \\
& {\left[\begin{array}{llll}
1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \ldots\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & f_{1} \\
a_{2} & b_{2} & c_{2} & f_{2} \\
a_{3} & b_{3} & c_{3} & f_{3} \\
a_{4} & b_{4} & c_{4} & f_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right]} \\
& Y_{i} Y_{j} \top=-2 \pm\left(2 \epsilon_{1}+7 \epsilon_{2}\right)
\end{aligned}
$$

Recovering $X X^{\top}$ from $Y Y^{\top}$

$$
Y_{i} Y_{j} \top=X_{i} Z_{1} \ldots Z_{1} \top X_{j}
$$

$$
\left[\begin{array}{llll}
1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \cdots\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & f_{1} \\
a_{2} & b_{2} & c_{2} & f_{2} \\
a_{3} & b_{3} & c_{3} & f_{3} \\
a_{4} & b_{4} & c_{4} & f_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right]
$$

$$
Y_{i} Y_{j} \top=-2 \pm 2 \epsilon_{1}+7 \epsilon_{2}
$$

$$
Y_{i} Y_{j} \top=X_{i} X_{j} \top \pm\left(d \epsilon_{1}+d^{2} \epsilon_{2}\right)=X_{i} X_{j} \top \pm \frac{1}{2} \circ(1)
$$

A Simple Case: $Y=X_{1} X_{2}$

Sparse Decomposition:

Recovering X from $X X^{\top}$

