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Unsupervised Learning

Unsupervised learning is about describing the data in
the best informative way

@ Why unsupervised learning?
e Enormous amount of unlabeled data

@ Facebook: 300 million new photos are added per day
@ Youtube: 150,000 hours of video are uploaded per day

o Multi-task learning

@ How to capture properties of data?

Model

f(x) | — Data
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High Level Representation®

Diagonal

'Image from: http://theanalyticsstore.com/deep-learning
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RBMs, Auto-Encoders

v =ca(Wth!)
W= a(WL'y)
Auto-Encoder
output -
Idecode v U( Wh)
hidden - h O‘(WT V)

Tencode

input
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Sparsity Assumption

Main Observations:

@ Each high level feature is
composed of a few low level
features

@ Each image contains a few high
level features.

@ We are looking for a compact
representation of the data:

Y = o(Xi0(Xao (... Xs)))
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Sparse Matrix Factorization

Problem

1 7(X)

s
1

Given a matrix Y, minimize the total sparsity »;

stY =o(Xi.0(Xz.0(..

- Xs))) @

%0 is a term-wise sign function
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Problem

1 ™(Xi)

Given a matrix Y, minimize the total sparsity >

st. Y

X1 X5 ... Xs
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Smallest Circuit
Sparse Matrix Factorization (non-linear) of Y

Smallest circuit that generates Y.

alb:o(a+ b—0.5)
a&b:o(a+b—1.5)

la:o(—a)
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Problem Settings

@ Each X; is a d-sparse random matrix

@ Each non-zero entry in X; is either +1 or -1 with equal
probability

Problem
Let Y = X1 X... X;s.
Given Y, find X1,..., Xs.

Problem

Let Y = o(Xy.0(X2.0(... X5))) 2.
Given Y, find X1,..., Xs

%0 is a term-wise sign function
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A Simple Case: Y = X1 X,

Sparse Decomposition:

+1 0 +1 0 -1 0 0 O 0 -10+10 -10 O

0 -10+10 -10 O 0+10 0 0 -1 0 +1

0+1 0 0 0 -1 0 +1 0 0 +1 0 0 +1 0 +1

Y — +1 0 +1 0 0 0 -1 0 +1 0 +1 0 -1 0 0 O
- 0 +1 0 0 +1 0 0 +1 +1 0 +1 0 0 0 -1 0
-1 0 0 +1 0 -1 0 O 0 +1 0 0 +1 0 0 +1

0 -10 0 +10 -10 -10 0 +1 0 -1 0 O

0 0 +1 0 0 +1 0 +1 0 -10 0 +10 -10
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A Simple Case: Y = X1 X,

Sparse Decomposition:

+1 0 +1 0 -1 0 0 0 0 -10+10 -10 0
0 -1 0 +10 -10 0 0 410 0 0 —1 0 +1
0410 0 0 —1 0 +1 0 0 41 0 0 +1 0 +1
y—|+10+10 0 0-10 410 41 0 -1 0 0 0
—]10+10 0 +10 0 +1 410 £1 0 0 0 -1 0
-10 0 +1 0 -1 0 0 0 +1 0 0 +1 0 0 +1
0 -10 0 +10 —10 -10 0 +10 —-10 0
0 0 410 0 +1 0 +1 0 -1 0 0 +10 -10
Low Rank Decomposition:
4+141-100000 ~1+41-1000007 T
~141-100000 +1-14100000
4+1-14100000 +1+1+100000
y — | +1+1-100000 +141-100000
~ | +1+1+100000 +14+1-100000
~1+41-100000 +1+1+100000
~1+41-100000 ~1+41-100000
41414100000 ~141-100000
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A Simple Case: Y = X1 X,

Sparse Decomposition:

+1 0 +1 0 -1 0 0 0 0 -1 0 +10 0 0
0 -1 0 +10 -10 0 0410 0 0 —1 0 +1
0410 0 0 —1 0 +1 0 0 41 0 0 +1 0 +1
y—|+10+10 0 0-10 410 41 0 -1 0 0 0
—]10+10 0 +10 0 +1 410 £1 0 0 0 -1 0
-10 0 +4+1 0 —-10 O 0 +1 0 0 +1 0 0 +1
0 -10 0 +10 —-10 -10 0 +1 0 —-10 O
0 0 10 0 +1 0 +1 0 -1 0 0 +10 -10

Low Rank Decomposition:

+1 41 -1 —141-177T

-1 +1 -1 +1 -1 +1

+1 -1 +1 +1+1 +1
Y = +1+1 -1 +1+1 -1
+1+1 +1 +1+1 -1
-1+41 -1 +1+1 +1
-1+41-1 -1+1-1
+1 +1 +1 -1+1-1
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A Simple Case: Y = X1 X,

Sparse Decomposition:

+1 0 +1 0 -1 0
0 -1 0 +10 -1
0+4+10 0 0 -1
+1 0 +1 0 O
0 +1 0 0 +1
-1 0 0 +1 0
0 -1 0 0 +1
0 0 +10 O

fary

Y =

[ay

ol ool ococo
S [

toloco
tootfotoo

Low Rank Decomposition:

+1+1 -1
141 -1
+1 -1 +1
Y = +1+1 -1
+1 +1 +1
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Sparse Matrix Factorization

0 -10+10 0 0
0410 0 0 -1 0 +1
0 041 0 0 +1 0 +1
+1 0 410 -1 0 0 O
+1 0 410 0 0 —1 0
0 +1 0 0 +1 0 0 +1
-10 0+10 -10 0
0 -10 0+10 -10
~1+41-177T

+1 -1 +1

+1 +1 41

+1+1 -1

+1 +1 -1

+1 +1 +1

—-1+1 -1

—14+1 -1
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A Special Case: Y = AX

Dictionary Learning: A = [A; A2 As Ay As A A7 Ag |
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PCA: A= [A1 Az As]

—141-177T
+1 -1 +1
+1 41 +1
_ +1 41 -1
Y=A|l11111
+1 41 +1
—141 -1
-1 +1 -1
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What do we already know?
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What do we already know?

A very recent work by Arora et al:

@ Polynomial time algorithm for non-linear factorizations of
random d-sparse networks: Y = o(Xi.0(X2.0(... X5)))

e Sparsity d < n/®
@ Depth s < log, n.

@ When depth s < logy n, linear and nonlinear cases are
almost the same.
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A very recent work by Arora et al:

@ Polynomial time algorithm for non-linear factorizations of
random d-sparse networks: Y = o(Xi.0(X2.0(... X5)))

e Sparsity d < n/®
@ Depth s < log, n.

@ When depth s < logy n, linear and nonlinear cases are
almost the same.
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Our Goal

Develope a natural algorithm based on the following fundamental rule:

Neurons that fire together, wire together!
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Main Result

Theorem
If

o Y =X1X5... X
o sparsity d < n'/®
° s§§

w.h.p. if X; is invertible, there is a natural algorithm that computes
X1,...,Xs in a polynomial time.
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Intuition

0]0]0[0]0]e
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Intuition

OO0
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Proof Sketch

Y =X1X2... X
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Proof Sketch

Y= X1 X... X
~N—

o YYT ~ XXT
o XXT=round(YYT)
@ Getting X from XX,

@ Recovering Z.
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Distribution of Y

We want to show that :

xi.xj ~ (% 2)-(2)

Lemma
If
e g=xZ
e x; ~N(0,1)"
t2 ~
w.h.p. ®g(t) < e 7¥0()

Characteristic function is defined as:

®x(t) = E[e¥X] and for a gaussian

variable X we have that

Ox(t) = et/

November 19, 2013
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Distribution of YY T

Lemma

If
e g=x;Zandw = x;Z.
e xj,xj ~N(0,1)"
w.h.p.

2452 20( L

T _ .7 1
XiXj =Yy £3
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Recovering X from XX
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Recovering X from XX

OO0000O000O
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Recovering X from XX

OO0000O000O
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Recovering X from XX
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Recovering Z

e By calculating the inverse of X directly : Z = X~1Y
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Recovering Z

e By calculating the inverse of X directly : Z = X~1Y
o By iterative corrections:

err, = Y(I — 1XXT)"
(6%
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Conclusion and Future Works

@ There exists a simple natural algorithm that is guaranteed to recover
random sparse networks of depth O(y/n/d).

e Future works:
o Extending the algorithm and proves to non-linear case with O(y/n/d)
layers.
e Showing that we can recover denser matrices by more careful analysis
e Develop a practical learning method based on the proposed algorithm
and evaluate it on the real data
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Thank You!
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Dictionary Learning under
Group Sparsity Assumption
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Detection

Do we always need to detect different parts of human body
before detecting a human?
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Detection

Do we always need to detect different parts of human body
before detecting a human?
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Group Sparsity

@ Each group is a high level feature that includes several low level
features (parts).

@ Each part can be seen in several groups.

@ Given matrix Y such that Y = AX, find A and X under group
sparsity assumption for X.
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The general idea

Detect all groups.
Find a correlation clustering of groups.

Show that each cluster corresponds to a part.

Set A; to be the average over all Y; where Y has the part /.
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Distribution of YY T

OO0O0O0O0O®
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E[XX]
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Distribution of YY T

O0O0O00O®

E[X =&
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Distribution of YY T

O0O0O00O®

k
E[xF = & 4 CQF
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Distribution of YY T

O0O000O0OC¢

ONORENO

k k
EXH =9+ CQ° 4 &
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Distribution of YY T

O0O000O0OC¢

ONORENO

E[X¥] = g_,{; (= Q1) + + (—2an)k
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Distribution of YY T

O0O0000O«

ONONONORENO

E[Xk]zg—,{; (= Q1) + % +( Q2) +.
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Distribution of YY T
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Distribution of YY T
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Distribution of YY T
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E[Xk]zg—,{; (= Q1) + % +( Q2) +.
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Distribution of YY T

ONONONOROKC’

+1

ONONONORENO

n
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Distribution of YY T

ONONORORONC:

-1

ONONORORENO

[P A G A A G2 L« S

g
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Distribution of YY T

OO0O0O0O0O®

ONONONORENO

E[XK] = E[Q] + 20 FlOT < QA 4 e
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Recovering XX from YYT

YV T =XZ... 2T X

dal 42 ai a4as dl b1 C1
1 -1 0 1] by by b3 by a2 b o
Ci G 3 & as b3 C3
h h 3 f as bs <
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Recovering XX from YYT

VYT =XZi... 2 TX

dl d2 a3 a4 dl b1 C1 f1 -1
B by b b3 by an b o h 1
[1 10 1] Ci G 3 & T as b3 C3 f3 1
hi b B f as by c fa| | O

Y,Y,T=—1+¢
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Recovering XX from YYT

VYT =XZi... 2 TX

dl d2 a3 a4 dl b1 C1
1 -1 0 1] by by b3 by a2 b o
Ci G 3 & as b3 C3
h h 3 f as by c

\/,'\/J'T:—].Zl:<(1+(2)
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Recovering XX from YYT

VYT =XZi... 2 TX

ay a» a3z as aia b1
1 -1 0 1] by by b3 by a2 b o
a1 & ¢ &l Tlas b3 3
i h 3 14 as by

\/,YIT:—].ZE<(1+2(2)
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Recovering XX from YYT

VYT =XZi... 2 TX

a1 a» az aa a1 b1
1 -1 0 1] by by bz by a2 b o
1 & ¢ &l Tlaz b3 3
i h 3 14 as by

VYT = =24 (2¢) 4 4¢s)
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Recovering XX from YYT

VYT =XZi... 2 TX

a1 a» az aa a1 b1
1 -1 0 1] by by b3 by a2 b o
1 & ¢ &l Tlaz b3 3
hi b B f arn by

YiVT = =24 (2, + 7c5)

Behnam, Rina (TTI-C, MSR) Sparse Matrix Factorization

il [—1
5 1
f3 1
fa 0

November 19, 2013



Recovering XX from YYT

VYT =XZi... 2 TX

dal 42 ai a4as dl b1 C1 f1 -1
1 -1 0 1] by by b3 by E: b o 6 1
Ci G 3 & as b3 C3 f3 1
i h R £ ag by c fa] | O
YiV;T =-24%
YV, T = X;XT+ =X;X;T+1
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Recovering X from XX

X | l
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Recovering X from XX

X; | - [
X; r
X N
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Recovering X from XX

X; | - [
X; r
X N
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Recovering X from XX

X; | i [ |
X; N T
Xk [
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Recovering X from XX

X; | i [ |
X; N T
Xk [ |
X, HEm mmm
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Recovering X from XX
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Recovering X from XX
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Recovering X from XX

2
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Recovering X from XX

>
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Recovering X from XX
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Recovering X from XX
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