Sparse Matrix Factorization

Behnam Neyshabur ¹ Rina Panigrahy ²

¹Toyota Technological Institute at Chicago

²Microsoft Research

November 19, 2013

Unsupervised Learning

Unsupervised learning is about describing the data in the best informative way

- Why unsupervised learning?
 - Enormous amount of unlabeled data
 - Facebook: 300 million new photos are added per day
 - Youtube: 150,000 hours of video are uploaded per day
 - Multi-task learning
- How to capture properties of data?

High Level Representation¹

¹Image from: http://theanalyticsstore.com/deep-learning >

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 2 / 35

< 🗇 🕨

Deep Networks

November 19, 2013 3 / 35

< 🗗 🕨

RBMs, Auto-Encoders

RBM

$$v = \sigma(W^1 h^1)$$
$$h^1 = \sigma(W^1^\top v)$$

Auto-Encoder

$$v = \sigma(Wh)$$
$$h = \sigma(\tilde{W}^{\top}v)$$

Behnam, Rina (TTI-C, MSR)

November 19, 2013 4 / 35

Sparsity Assumption

Main Observations:

- Each high level feature is composed of a few low level features
- Each image contains a few high level features.
- We are looking for a compact representation of the data:

$$Y = \sigma(X_1 \sigma(X_2 \sigma(\ldots X_s)))$$

Sparse Matrix Factorization

Problem

Given a matrix Y, minimize the total sparsity $\sum_{i=1}^{s} \pi(X_i)$ s.t $Y = \sigma(X_1.\sigma(X_2.\sigma(\ldots X_s)))^{a}$

 ${}^{s}\sigma$ is a term-wise sign function

	62	-6 -6	3 6	0	2 1	_4 3	2		6	0	+1 0	0 +1	0	0 -1	0	0]		0 +1	0	+1 0	0	0 0	0	0 +1	0 +1	0	+1 0	0	0	-1 0	0 +1	8]
3	2	-5	4	0	1	4	0	_	+1	0	0	0	0	0	-1	+1 0		+1	0	0	0	-1	0	0	0	0	0	0	-1	0	0	0	+1
1	1 34	3	17	2 1	-1 3	-3 6 -	3 4	-	0	+1	0	0	0	0	0	+1		+1	0 +1	+1 0	0	0	0	0	0 +1	 0 +1	+1	0	0	0	0	0 +1	+1 0
L -4	4 - 2	3 - 1 3	3 -1	2 -3	1	-5 1	1			0	0 +1	-1 0	0	0	-1	0			0	0	+1 0	0 +1	-1 0	0 -1	0		0	+1 0	0 +1	-1	0	0	8

Problem

Given a matrix Y, minimize the total sparsity $\sum_{i=1}^{s} \pi(X_i)$ s.t. $Y = X_1 X_2 \dots X_s$ Smallest Circuit

Sparse Matrix Factorization (non-linear) of Y

 \equiv

Smallest circuit that generates Y.

$$egin{aligned} & |b:\sigma(a+b-0.5) \ & a\&b:\sigma(a+b-1.5) \ & !a:\sigma(-a) \end{aligned}$$

Problem Settings

- Each X_i is a *d*-sparse random matrix
- Each non-zero entry in X_i is either +1 or -1 with equal probability

Problem

Let $Y = X_1 X_2 \dots X_s$. Given Y, find X_1, \dots, X_s .

Problem

Let $Y = \sigma(X_1.\sigma(X_2.\sigma(\ldots X_s)))^a$. Given Y, find X_1, \ldots, X_s

 ${}^{\rm a}\sigma$ is a term-wise sign function

Sparse Decomposition:

$$Y = \begin{bmatrix} +1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & -1 & 0 & 0 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & -1 & 0 & +1 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix}$$

э

Image: Image:

3

Sparse Decomposition:

$$Y = \begin{bmatrix} +1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & -1 & 0 & +1 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix}$$

Low Rank Decomposition:

$$Y = \begin{bmatrix} +1 + 1 - 1 & 0 & 0 & 0 & 0 \\ -1 + 1 & -1 & 0 & 0 & 0 & 0 \\ +1 & -1 & +1 & 0 & 0 & 0 & 0 \\ +1 & +1 & -1 & 0 & 0 & 0 & 0 \\ +1 & +1 & +1 & 0 & 0 & 0 & 0 \\ -1 & +1 & -1 & 0 & 0 & 0 & 0 \\ -1 & +1 & -1 & 0 & 0 & 0 & 0 \\ +1 & +1 & +1 & 0 & 0 & 0 & 0 \end{bmatrix}^{\top} \begin{bmatrix} -1 + 1 - 1 & 0 & 0 & 0 & 0 \\ +1 & -1 & +1 & 0 & 0 & 0 & 0 \\ +1 & +1 & -1 & 0 & 0 & 0 & 0 \\ +1 & +1 & +1 & 0 & 0 & 0 & 0 \\ -1 & +1 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}^{\top}$$

Behnam, Rina (TTI-C, MSR)

Sparse Decomposition:

$$Y = \begin{bmatrix} +1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & +1 & 0 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix}$$

Low Rank Decomposition:

$$\boldsymbol{Y} = \begin{bmatrix} +1 + 1 & -1 \\ -1 + 1 & -1 \\ +1 & -1 + 1 \\ +1 + 1 & -1 \\ -1 + 1 & -1 \\ -1 + 1 & -1 \\ +1 + 1 & +1 \end{bmatrix} \begin{bmatrix} -1 + 1 & -1 \\ +1 & -1 + 1 \\ +1 + 1 & -1 \\ +1 + 1 & -1 \\ -1 + 1 & -1 \end{bmatrix}^{\top}$$

Behnam, Rina (TTI-C, MSR)

Sparse Decomposition:

$$Y = \begin{bmatrix} +1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & 0 & +1 \\ -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ +1 & 0 & +1 & 0 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix}$$

Low Rank Decomposition:

$$\boldsymbol{Y} = \begin{bmatrix} +1 + 1 & -1 \\ -1 + 1 & -1 \\ +1 & -1 + 1 \\ +1 + 1 & -1 \\ +1 + 1 & +1 \\ -1 + 1 & -1 \\ -1 + 1 & -1 \\ +1 & +1 & +1 \end{bmatrix} \begin{bmatrix} -1 + 1 & -1 \\ +1 & -1 + 1 \\ +1 & +1 & +1 \\ +1 & +1 & -1 \\ +1 & +1 & -1 \\ -1 & +1 & -1 \end{bmatrix}^{\top}$$

Behnam, Rina (TTI-C, MSR)

A Special Case: Y = AX

Dictionary Learning: $A = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 & A_8 \end{bmatrix}$

$$Y = A \begin{bmatrix} 0 & -1 & 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & -1 & 0 & +1 \\ 0 & 0 & +1 & 0 & 0 & +1 & 0 & +1 \\ +1 & 0 & +1 & 0 & -1 & 0 & 0 & 0 \\ +1 & 0 & +1 & 0 & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & +1 & 0 & -1 & 0 \end{bmatrix}$$

PCA: $A = [A_1 \ A_2 \ A_3]$

$$Y = A \begin{bmatrix} -1 & +1 & -1 \\ +1 & -1 & +1 \\ +1 & +1 & +1 \\ +1 & +1 & -1 \\ +1 & +1 & +1 \\ -1 & +1 & -1 \\ -1 & +1 & -1 \end{bmatrix}^{\top}$$

э

What do we already know?

- 一司

3

What do we already know?

A very recent work by Arora et al:

- Polynomial time algorithm for non-linear factorizations of random *d*-sparse networks: $Y = \sigma(X_1.\sigma(X_2.\sigma(...X_s)))$
- Sparsity $d \le n^{1/5}$
- Depth $s \leq \log_d n$.
- When depth s ≤ log_d n, linear and nonlinear cases are almost the same.

What do we already know?

A very recent work by Arora et al:

- Polynomial time algorithm for non-linear factorizations of random *d*-sparse networks: $Y = \sigma(X_1.\sigma(X_2.\sigma(...X_s)))$
- Sparsity $d \le n^{1/5}$
- Depth $s \leq \log_d n$.
- When depth s ≤ log_d n, linear and nonlinear cases are almost the same.

Our Goal

Develope a natural algorithm based on the following fundamental rule: Neurons that fire together, wire together!

Main Result

Theorem

lf

- $Y = X_1 X_2 \dots X_s$
- sparsity $d \le n^{1/6}$
- $s \leq \frac{\sqrt{n}}{d}$

w.h.p. if X_i is invertible, there is a natural algorithm that computes X_1, \ldots, X_s in a polynomial time.

000000

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 13 / 35

イロト イヨト イヨト イヨト

3

Behnam, Rina (TTI-C, MSR)

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Behnam, Rina (TTI-C, MSR)

æ

ヨト・イヨト

• • • • • • • •

Behnam, Rina (TTI-C, MSR)

æ

ヨト・イヨト

A B > A
 A
 B > A
 A

Behnam, Rina (TTI-C, MSR)

3

Behnam, Rina (TTI-C, MSR)

3

・ロト ・聞ト ・ヨト ・ヨト

Proof Sketch

$$Y = X_1 X_2 \dots X_s$$

イロト イヨト イヨト イヨト

Proof Sketch

$$Y = \underbrace{X_1}_X \underbrace{X_2 \dots X_s}_Z$$

- $YY^{\top} \sim XX^{\top}$
- XX^{\top} =round(YY^{\top})
- Getting X from XX^{\top} .
- Recovering Z.

э

Distribution of Y

We want to show that :

 $x_i.x_j \sim (x_iZ).(x_jZ)$

Lemma

lf

•
$$q = x_i Z$$

• $x_i \sim \mathcal{N}(0,1)^n$
w.h.p. $\Phi_q(t) \le e^{\frac{t^2}{2} \pm t^2 \tilde{O}(\frac{\ell}{\sqrt{n}})}.$

Characteristic function is defined as: $\Phi_X(t) = E[e^{tX}]$ and for a gaussian variable X we have that $\Phi_X(t) = e^{t^2/2}$

Distribution of YY^{\top}

Lemma
If
•
$$q = x_i Z$$
 and $w = x_j Z$.
• $x_i, x_j \sim \mathcal{N}(0, 1)^n$
w.h.p.
 $\Phi_{q,w}(s, t) \leq e^{\frac{t^2+s^2}{2} \pm (s+t)^2 \tilde{O}(\frac{\ell}{\sqrt{n}})}$

∃ → (∃ →

• • • • • • • •

Recovering X from XX^{\top}

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 17 / 35

- < A

3

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

-November 19, 2013 17 / 35

- 一司

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 18 / 35

- 一司

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

-November 19, 2013 19 / 35

- 一司

• By calculating the inverse of X directly : $Z = X^{-1}Y$

э

Recovering Z

- By calculating the inverse of X directly : $Z = X^{-1}Y$
- By iterative corrections:

$$\mathsf{err}_n = Y(I - rac{1}{lpha}XX^ op)^n$$

э

- There exists a simple natural algorithm that is guaranteed to recover random sparse networks of depth $O(\sqrt{n}/d)$.
- Future works:
 - Extending the algorithm and proves to non-linear case with $O(\sqrt{n}/d)$ layers.
 - Showing that we can recover denser matrices by more careful analysis
 - Develop a practical learning method based on the proposed algorithm and evaluate it on the real data

Thank You!

Image: A matrix

Dictionary Learning under Group Sparsity Assumption

Detection

Do we always need to detect different parts of human body before detecting a human?

Detection

Do we always need to detect different parts of human body before detecting a human?

Detection

Do we always need to detect different parts of human body before detecting a human?

Group Sparsity

- Each group is a high level feature that includes several low level features (parts).
- Each part can be seen in several groups.
- Given matrix Y such that Y = AX, find A and X under group sparsity assumption for X.

The general idea

- Detect all groups.
- Find a correlation clustering of groups.
- Show that each cluster corresponds to a part.
- Set A_i to be the average over all Y_j where Y_j has the part *i*.

 $E[X^k]$

Image: Image:

3. 3

- ∢ 🗇 እ

< 4 ► >

< 4 ► >

< 67 ▶

A B F A B F November 19, 2013 27 / 35

Behnam, Rina (TTI-C, MSR)

A B F A B F November 19, 2013 27 / 35

Behnam, Rina (TTI-C, MSR)

November 19, 2013

3

27 / 35

November 19, 2013

3

27 / 35

$$E[X^k] = E[Q^k] + \frac{\sum_i Q_i^k - E[Q^k]}{n} \le E[Q^k] + \frac{\log^k n}{\sqrt{n}}$$

Behnam, Rina (TTI-C, MSR)

글 > - + 글 > November 19, 2013

Image: A matrix and a matrix

3

27 / 35

$$Y_i Y_j \top = X_i Z_1 \dots Z_1 \top X_j$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix} \cdots \begin{bmatrix} a_1 & b_1 & c_1 & f_1 \\ a_2 & b_2 & c_2 & f_2 \\ a_3 & b_3 & c_3 & f_3 \\ a_4 & b_4 & c_4 & f_4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Behnam, Rina (TTI-C, MSR)

November 19, 2013 28 / 35

イロト イヨト イヨト

$$Y_i Y_j \top = X_i Z_1 \dots Z_1 \top X_j$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix} \cdots \begin{bmatrix} a_1 & b_1 & c_1 & f_1 \\ a_2 & b_2 & c_2 & f_2 \\ a_3 & b_3 & c_3 & f_3 \\ a_4 & b_4 & c_4 & f_4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 $Y_i Y_i \top = -1 \pm \epsilon_1$

Behnam, Rina (TTI-C, MSR)

November 19, 2013 28 / 35

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

$$Y_i Y_j \top = X_i Z_1 \dots Z_1 \top X_j$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix} \cdots \begin{bmatrix} a_1 & b_1 & c_1 & f_1 \\ a_2 & b_2 & c_2 & f_2 \\ a_3 & b_3 & c_3 & f_3 \\ a_4 & b_4 & c_4 & f_4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 $Y_i Y_j \top = -1 \pm (\epsilon_1 + \epsilon_2)$

3

< □ > < ---->

$$Y_i Y_j \top = X_i Z_1 \dots Z_1 \top X_j$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix} \cdots \begin{bmatrix} a_1 & b_1 & c_1 & f_1 \\ a_2 & b_2 & c_2 & f_2 \\ a_3 & b_3 & c_3 & f_3 \\ a_4 & b_4 & c_4 & f_4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 $Y_i Y_i \top = -1 \pm (\epsilon_1 + 2\epsilon_2)$

Behnam, Rina (TTI-C, MSR)

∃ → November 19, 2013 28 / 35

Image: Image:

$$Y_i Y_j \top = X_i Z_1 \dots Z_1 \top X_j$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix} \cdots \begin{bmatrix} a_1 & b_1 & c_1 & f_1 \\ a_2 & b_2 & c_2 & f_2 \\ a_3 & b_3 & c_3 & f_3 \\ a_4 & b_4 & c_4 & f_4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 $Y_i Y_i \top = -2 \pm (2\epsilon_1 + 4\epsilon_2)$

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- < ∃ → November 19, 2013 28 / 35

Image: Image:

$$Y_i Y_j \top = X_i Z_1 \dots Z_1 \top X_j$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix} \cdots \begin{bmatrix} a_1 & b_1 & c_1 & f_1 \\ a_2 & b_2 & c_2 & f_2 \\ a_3 & b_3 & c_3 & f_3 \\ a_4 & b_4 & c_4 & f_4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 $Y_i Y_i \top = -2 \pm (2\epsilon_1 + 7\epsilon_2)$

Behnam, Rina (TTI-C, MSR)

∃ → November 19, 2013 28 / 35

Image: Image:

$$Y_i Y_j \top = X_i Z_1 \dots Z_1 \top X_j$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix} \cdots \begin{bmatrix} a_1 & b_1 & c_1 & f_1 \\ a_2 & b_2 & c_2 & f_2 \\ a_3 & b_3 & c_3 & f_3 \\ a_4 & b_4 & c_4 & f_4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 $Y_i Y_i \top = -2 \pm 2\epsilon_1 + 7\epsilon_2$

 $Y_i Y_i \top = X_i X_i \top \pm (d\epsilon_1 + d^2 \epsilon_2) = X_i X_j \top \pm \frac{1}{2} o(1)$

Behnam, Rina (TTI-C, MSR)

Image: Image:

A Simple Case: $Y = X_1 X_2$

Sparse Decomposition:

$ \begin{bmatrix} 4 & 6 & - \\ 3 & 2 & - \\ 1 & 2 & - \\ 3 & 2 & - \end{bmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{bmatrix} 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \\ 0 & +1 & 0 & 0 \\ +1 & 0 & 0 & 0 \end{bmatrix} $	$ \begin{array}{ccc} -1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \end{array} $	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & +1 \\ -1 & 0 \end{bmatrix}$	0 0 0 +1 0 0 +1 0	$\begin{array}{ccc} 0 & +1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & +1 \\ -1 & 0 \end{array}$	$ \begin{array}{ccc} -1 & 0 \\ 0 & +1 \\ 0 & +1 \\ 0 & 0 \end{array} $	$\begin{bmatrix} 0\\ +1\\ 0\\ 0 \end{bmatrix}$	$ \begin{array}{cccc} 0 & +1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $	0 0 -1	0 0 +1 0	$ \begin{array}{c} -1 & 0 \\ 0 & + \\ 0 & + \\ 0 & 0 \end{array} $) (1 (1 () +
$\begin{bmatrix} 1 & 1 \\ -3 & 4 \\ -4 & -3 \\ 4 & 2 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	$ \begin{bmatrix} 0 +1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 +1 & 0 \end{bmatrix} $	$ \begin{array}{ccc} 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ -1 & 0 \end{array} $	$\begin{bmatrix} 0 & +1 \\ 0 & 0 \\ -1 & 0 \\ 0 & 0 \end{bmatrix}$	$ \begin{array}{c} +1 & 0 \\ 0 & +1 \\ 0 & 0 \\ 0 & 0 \end{array} $		$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ +1 & 0 \end{array}$	$ \begin{array}{ccc} 0 & 0 \\ 0 & +1 \\ 0 & 0 \\ -1 & 0 \end{array} $	 0 +1 0 0	$^{+1}_{0} 0 \\ 0 + 1 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 \\ 0$	0 0 1 0 +1	0 0 -1 0	0 (0 + 0 (-1 () + 1 () () (

< A

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 33 / 35

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 34 / 35

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

∃ → November 19, 2013 34 / 35

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

∃ → November 19, 2013 34 / 35

Image: A matrix

Behnam, Rina (TTI-C, MSR)

- ∢ 🗇 እ

Behnam, Rina (TTI-C, MSR)

∃ → November 19, 2013 34 / 35

< A

э

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 35 / 35

- 一司

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → 35 / 35 November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Image: A matrix

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Image: A matrix

Behnam, Rina (TTI-C, MSR)

▶ < ∃ > 35 / 35 November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

→ < ∃ →</p> 35 / 35 November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

November 19, 2013 35 / 35

∃ ► < ∃ ►</p>

Behnam, Rina (TTI-C, MSR)

Sparse Matrix Factorization

- ∢ ≣ → November 19, 2013